5+10-5^2=8x+7x/1x-25x

Simple and best practice solution for 5+10-5^2=8x+7x/1x-25x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5+10-5^2=8x+7x/1x-25x equation:



5+10-5^2=8x+7x/1x-25x
We move all terms to the left:
5+10-5^2-(8x+7x/1x-25x)=0
Domain of the equation: 1x-25x)!=0
x∈R
We add all the numbers together, and all the variables
-(-17x+7x/1x)+5+10-5^2=0
We add all the numbers together, and all the variables
-(-17x+7x/1x)-10=0
We get rid of parentheses
17x-7x/1x-10=0
We multiply all the terms by the denominator
17x*1x-7x-10*1x=0
We add all the numbers together, and all the variables
-7x+17x*1x-10*1x=0
Wy multiply elements
17x^2-7x-10x=0
We add all the numbers together, and all the variables
17x^2-17x=0
a = 17; b = -17; c = 0;
Δ = b2-4ac
Δ = -172-4·17·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-17}{2*17}=\frac{0}{34} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+17}{2*17}=\frac{34}{34} =1 $

See similar equations:

| 2/3(n-1)=1/2 | | 10x5-25x3=0 | | x+6+5x+3x+3=x+6+x+6+x+6+x+6 | | -13+x=-5x+11 | | 2/3(n-1)=-1/2 | | -2=4n+10 | | (3/10)x^2-(2/5)x+(7/10)=0 | | 3/2x+5=4/5x+10 | | 17x-3=2*(7x+3) | | 36x^2-36x-13=0 | | 17x-3=(7x+3)*2 | | 0=8/3x-16 | | 4b(2b=5)-2(3b-1) | | 700–35n=450+15n | | 30=18h=25+20h | | 3x+45=15 | | 2x+9.2=22 | | 2m(m+5)=0 | | 8x-2=7x-7 | | -6(9x+5)-3x+4x=-408=x | | (x+1)^2=100 | | 4m-36=14 | | -7m^2+9m-8=0 | | 2x^2-17x-240=0 | | 43=-5t-2 | | -2+26=5b+5.5 | | (x2+16)(x2–16)= | | 4(x+1.92)=3x | | 5(c-15)=-55 | | 0.5x+4=2x-10+14 | | -5/2+5/4=5/3x-2/5x | | k/8+7=-71 |

Equations solver categories